We consider the inverse acoustic obstacle problem for sound-soft star-shaped obstacles in two dimensions wherein the boundary of the obstacle is determined from measurements of the scattered field at a collection of receivers outside the object. One of the standard approaches for solving this problem is to reformulate it as an optimization problem: finding the boundary of the domain that minimizes the $L^2$ distance between computed values of the scattered field and the given measurement data. The optimization problem is computationally challenging since the local set of convexity shrinks with increasing frequency and results in an increasing number of local minima in the vicinity of the true solution. In many practical experimental settings, low frequency measurements are unavailable due to limitations of the experimental setup or the sensors used for measurement. Thus, obtaining a good initial guess for the optimization problem plays a vital role in this environment. We present a neural network warm-start approach for solving the inverse scattering problem, where an initial guess for the optimization problem is obtained using a trained neural network. We demonstrate the effectiveness of our method with several numerical examples. For high frequency problems, this approach outperforms traditional iterative methods such as Gauss-Newton initialized without any prior (i.e., initialized using a unit circle), or initialized using the solution of a direct method such as the linear sampling method. The algorithm remains robust to noise in the scattered field measurements and also converges to the true solution for limited aperture data. However, the number of training samples required to train the neural network scales exponentially in frequency and the complexity of the obstacles considered. We conclude with a discussion of this phenomenon and potential directions for future research.
translated by 谷歌翻译
This work is concerned with solving neural network-based feedback controllers efficiently for optimal control problems. We first conduct a comparative study of two mainstream approaches: offline supervised learning and online direct policy optimization. Albeit the training part of the supervised learning approach is relatively easy, the success of the method heavily depends on the optimal control dataset generated by open-loop optimal control solvers. In contrast, direct optimization turns the optimal control problem into an optimization problem directly without any requirement of pre-computing, but the dynamics-related objective can be hard to optimize when the problem is complicated. Our results highlight the priority of offline supervised learning in terms of both optimality and training time. To overcome the main challenges, dataset, and optimization, in the two approaches respectively, we complement them and propose the Pre-train and Fine-tune strategy as a unified training paradigm for optimal feedback control, which further improves the performance and robustness significantly. Our code is available at https://github.com/yzhao98/DeepOptimalControl.
translated by 谷歌翻译
游戏理论一直是控制疾病传播并提出个人和地区级别最佳政策的有效工具。在此AMS通知文章中,我们关注Covid-19的干预的决策制定,旨在提供数学模型和有效的机器学习方法,以及对过去实施的相关政策的理由,并如何解释当局如何解释当局从游戏理论的角度来看,决策会影响其邻近地区。
translated by 谷歌翻译
平均场控制和平均场游戏中的核心问题之一是解决相应的McKean-Vlasov前向后随机微分方程(MV-FBSDES)。大多数现有方法是针对特殊情况量身定制的,在这种情况下,平均场相互作用仅取决于期望或其他时刻,因此当平均场相互作用具有完全分布依赖性时,无法解决问题。在本文中,我们提出了一种新颖的深度学习方法,用于计算具有均值场相互作用的一般形式的MV-FBSDE。具体而言,我们基于虚拟游戏,我们将问题重新验证为重复求解具有明确系数功能的标准FBSDE。这些系数功能用于近似具有完全分布依赖性的MV-FBSDE的模型系数,并通过使用从上次迭代的FBSDE解决方案模拟的培训数据来解决另一个监督学习问题。我们使用深层神经网络来求解标准的BSDE和近似系数功能,以求解高维MV-FBSDE。在对学习功能的适当假设下,我们证明了所提出的方法的收敛性通过使用先前在[HAN,HU和LONG,ARXIV:2104.12036]中开发的一类积分概率指标来免受维数(COD)的诅咒。证明的定理在高维度中显示了该方法的优势。我们介绍了高维MV-FBSDE问题中的数值性能,其中包括众所周知的Cucker-Smale模型的平均场景示例,其成本取决于正向过程的完整分布。
translated by 谷歌翻译
我们提出了一种高效,可靠和可解释的全球解决方案方法$ \ TEXTIT {基于深度学习的异构代理模型,DeepHAM} $的算法,用于求解具有聚合冲击的高尺寸异质剂模型。状态分布大致由一组最佳的广义时刻表示。深度神经网络用于近似值和策略函数,目标通过直接模拟路径进行优化。除了是一个准确的全球求解器,此方法还具有三种附加功能。首先,它是求解复杂的异质剂模型的计算上有效,并且不会遭受维度的诅咒。其次,它提供了对个人国家分布的一般和可解释的代表;这对于解决宏观经济学中的经典问题是否以及如何以及如何在宏观经济中的古代问题。第三,它尽可能容易地解决了受限效率问题,这使得这适用于研究具有聚集震动的异构性药剂模型的最佳货币和财政政策的新可能性。
translated by 谷歌翻译
部分微分方程(PDE)在许多复杂动态过程的数学建模中发挥着主导作用。解决这些PDE通常需要预定的计算成本,特别是当必须对不同的参数或条件进行多次评估时。在培训之后,神经运营商可以比传统的PDE溶剂更快地提供PDES解决方案。在这项工作中,检查两个神经运营商的不变性属性和计算复杂性,用于标量数量的运输PDE。基于图形内核网络(GKN)的神经运算符在图形结构数据上运行,以合并非识别依赖性。在这里,我们提出了改进的GKN制定以实现帧不变性。传染媒介云神经网络(VCNN)是一个具有嵌入式帧不变性的替代神经运算符,可在点云数据上运行。基于GKN的神经运营商与VCNN相比,略微更好地预测性能。然而,GKN需要过度高的计算成本,与VCNN的线性增加相比,随着越来越多的离散物对象而直角增加。
translated by 谷歌翻译
由于难以在具有不确定环境中处理高维空间中的函数近似的难度,因此对增强学习(RL)的大多数现有的理论分析仅限于表格设置或线性模型。这项工作通过在一般的再现内核希尔伯特空间(RKHS)中分析RL,提供了新的挑战。我们考虑一个Markov决策过程的家庭$ \ mathcal {m} $,其中奖励功能位于RKHS的单位球中,过渡概率在给定的任意集中。我们通过分发不匹配$ \ delta _ {\ mathcal {m}}(\ epsilon)$来描述可允许的状态动作分配空间的复杂性,以响应RKHS中的扰动,以规模$ \ epsilon的扰动来描述禁用的状态动作分配空间的复杂性。 $。我们展示$ \ delta _ {\ mathcal {m}}(\ epsilon)$给出所有可能算法的错误的下限和两个特定算法的上限(适合奖励和拟合Q-ereration)的RL问题。因此,$ \ delta_ \ mathcal {m}(\ epsilon)$关于$ \ epsilon $衡量$ \ mathcal {m} $的难度。我们进一步提供了一些具体的示例,并讨论了$ \ delta _ {\ mathcal {m}}(\ epsilon)$衰减在这些例子中。作为副产品,我们表明,当奖励功能在高维RKHS中时,即使接到概率是已知的并且动作空间是有限的,仍然可以遭受维度的诅咒。
translated by 谷歌翻译
本文涉及高维度中经验措施的收敛。我们提出了一类新的指标,并表明在这样的指标下,融合不受维度的诅咒(COD)。这样的特征对于高维分析至关重要,并且与经典指标相反({\ it,例如,瓦斯泰尔距离)。所提出的指标源自最大平均差异,我们通过提出选择测试功能空间的特定标准来概括,以确保没有COD的属性。因此,我们将此类别称为广义最大平均差异(GMMD)。所选测试功能空间的示例包括复制的内核希尔伯特空间,巴伦空间和流动诱导的功能空间。提出了所提出的指标的三种应用:1。在随机变量的情况下,经验度量的收敛; 2. $ n $粒子系统的收敛到麦基·维拉索夫随机微分方程的解决方案; 3.构建$ \ varepsilon $ -NASH平衡,用于均质$ n $ - 玩家游戏的平均范围限制。作为副产品,我们证明,考虑到接近GMMD测量的目标分布和目标分布的一定表示,我们可以在Wasserstein距离和相对熵方面生成接近目标的分布。总体而言,我们表明,所提出的指标类是一种强大的工具,可以在没有COD的高维度中分析经验度量的收敛性。
translated by 谷歌翻译
本构模型广泛用于在科学与工程中建模复杂系统,其中基于第一原则,解决良好的模拟通常是非常昂贵的。例如,在流体动力学中,需要构成型型号来描述非局部,未解决的物理学,例如湍流和层状湍流转变。然而,基于部分微分方程(PDE)的传统本构模型通常缺乏稳健性,并且太硬而无法容纳不同的校准数据集。我们提出了一种基于可以使用数据学习的矢量云神经网络的帧无关的非局部构成模型。该模型在基于其邻域中的流量信息的点处预测闭合变量。这种非本种信息由一组点表示,每个点具有附加到它的特征向量,因此输入被称为矢量云。云通过帧无关的神经网络映射到封闭变量,不变于协调转换和旋转以及云中点的排序。这样,网络可以处理任何数量的任意排列的网格点,因此适用于流体模拟中的非结构化网格。所提出的网络的优点是在参数化的周期山几何形状上的标量传输PDE上进行了说明。矢量云神经网络是一个有前途的工具,不仅是非本体构成型模型,而且还是作为不规则结构域的PDE的一般代理模型。
translated by 谷歌翻译
Developing algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the notoriously difficult problem known as the "curse of dimensionality". This paper introduces a deep learning-based approach that can handle general high-dimensional parabolic PDEs. To this end, the PDEs are reformulated using backward stochastic differential equations and the gradient of the unknown solution is approximated by neural networks, very much in the spirit of deep reinforcement learning with the gradient acting as the policy function. Numerical results on examples including the nonlinear Black-Scholes equation, the Hamilton-Jacobi-Bellman equation, and the Allen-Cahn equation suggest that the proposed algorithm is quite effective in high dimensions, in terms of both accuracy and cost. This opens up new possibilities in economics, finance, operational research, and physics, by considering all participating agents, assets, resources, or particles together at the same time, instead of making ad hoc assumptions on their inter-relationships.
translated by 谷歌翻译